Colégio Estadual Sofia Mascarenhas /1º "a" Matutino
Grupo: Ângela Layane,Bruna Teixeira,Cinthya Viviane e Thayná Luiz

terça-feira, setembro 18


Função Logarítmica

0
Toda função definida pela lei de formação f(x) = logax, com a ≠ 1 e a > 0 é denominada função logarítmica de base a. Nesse tipo de função o domínio é representado pelo conjunto dos números reais maiores que zero e o contradomínio, o conjunto dos reais.

Exemplos de funções logarítmicas:

f(x) = log2x
f(x) = log3x
f(x) = log1/2x
f(x) = log10x
f(x) = log1/3x
f(x) = log4x
f(x) = log2(x – 1)
f(x) = log0,5


Determinando o domínio da função logarítmica 

Dada a função f(x) = (x – 2)(4 – x), temos as seguintes restrições:

1) 4 – x > 0 → – x > – 4 → x < 4
2) x – 2 > 0 → x > 2
3) x – 2 ≠ 1 → x ≠ 1+2 → x ≠ 3

Realizando a intersecção das restrições 1, 2 e 3, temos o seguinte resultado: 2 < x < 3 e 3 < x < 4.

Dessa forma, D = {x ? R / 2 < x < 3 e 3 < x < 4}


Gráfico de uma função logarítmica

Para a construção do gráfico da função logarítmica devemos estar atentos a duas situações:

? a > 1

? 0 < a < 1



Para a > 1, temos o gráfico da seguinte forma:
Função crescente
Para 0 < a < 1, temos o gráfico da seguinte forma:
Função decrescente



Características do gráfico da função logarítmica y = loga

O gráfico está totalmente à direita do eixo y, pois ela é definida para x > 0.

Intersecta o eixo das abscissas no ponto (1,0), então a raiz da função é x = 1.

Note que y assume todos as soluções reais, por isso dizemos que a Im(imagem) = R.


Através dos estudos das funções logarítmicas, chegamos à conclusão de que ela é uma função inversa da exponencial. Observe o gráfico comparativo a seguir:
Podemos notar que (x,y) está no gráfico da função logarítmica se o seu inverso (y,x) está na função exponencial de mesma base.



OPINIÃO DO GRUPO :

 Ângela Layane,Bruna Teixeira,Cynthia Viviane e Thayná Luiz


Entendemos que  Função Logarítmica ,é usada como instrumento de cálculo,que surgiram para realizar simplificações, uma vez que transformam multiplicações e divisões nas operações mais simples de soma e subtração.
Napier foi um dos que impulsionaram fortemente seu desenvolvimento, perto do início do século XVII. Ele é considerado o inventor dos logaritmos, muito embora outros matemáticos da época também tenham trabalhado com ele.
Já antes dos logaritmos, a simplificação das operações era realizada através das conhecidas relações trigonométricas, que relacionam produtos com somas ou subtrações. Esse processo de simplificação das operações envolvidas passou a ser conhecido como prostaférese, sendo largamente utilizado numa época em que as questões relativas à navegação e à astronomia estavam no centro das atenções. De fato, efetuar multiplicações ou divisões entre números muito grandes era um processo bastante dispendioso em termos de tempo. A simplificação, provocada pela prostaférese, era relativa e, sendo assim, o problema ainda permanecia.

Exemplo >
A função logarítmica de base a ∈ \ é uma função real de variável real , definida da seguinte forma:
 
Gráficos:

quinta-feira, abril 26


Conjuntos Numéricos Fundamentais em Diagrama

0
Abaixo temos a representação dos conjuntos numéricos fundamentais em um diagrama.
Através deste diagrama podemos facilmente observar que o conjunto dos números reais ( ) é resultado da união do conjunto dos números racionais como o conjunto dos números irracionais ( ). Observamos também que o conjunto dos números inteiros está contido no conjunto dos números racionais ( ) e que os números naturais são um subconjunto do números inteiros ( ).
Como podemos ver, os diagramas nos ajudam a trabalhar mais facilmente com conjuntos. Ainda neste diagrama rapidamente identificamos que os números naturais são também números reais ( ), mas não são números irracionais (  ), isto porque o conjunto dos números irracionais não contém o conjunto dos números naturais ( ), mas sim o conjunto números dos racionais que os contém ( ), assim como o conjuntos dos números reais ( ) e dos inteiros ( ).

Conjunto dos Números Reais

0
Acima vimos que um número natural também é um número inteiro ( ), assim como um número inteiro também é um número racional ( ), portanto .
Vimos também que os números racionais não estão contidos no conjunto dos números irracionais e vice-versa. A intersecção destes conjuntos resulta no conjunto vazio:
A intersecção é uma operação por meio da qual obtemos um conjunto de todos os elementos que pertencem simultaneamente a todos os conjuntos envolvidos. Sejam dois conjuntos e , a intersecção entre estes dois conjuntos será .
O conjunto dos números reais é representado pela letra R ( ) e é formado pela união do conjunto dos números racionais com o conjunto dos irracionais, que simbólicamente representamos por: .
A união é uma operação por meio da qual obtemos um conjunto de todos os elementos que pertencem ao menos a um dos conjuntos envolvidos. Sejam dois conjuntos e , a união entre estes dois conjuntos será .
O conjunto dos números racionais está contido no conjunto dos números reais ( ), assim como o conjunto dos números irracionais também é subconjunto do conjunto dos números reais ( ).
Através dos caracteres especiais "+" e "*", por exemplo, podemos representar o conjunto dos números reais positivos por .
Abaixo temos um exemplo de conjunto contendo número reais:

Conjunto dos Números Irracionais

0
Então mais curioso ainda você perguntou: "Se os números racionais são todos aqueles que podem ser expressos na forma de fração, então existem aqueles que não podem ser expressos desta forma?"

Exatamente, estes números pertencem ao conjunto dos números irracionais. Provavelmente os mais conhecidos deles sejam o número PI ( ), o número de Euler ( ) e a raiz quadrada de dois ( ). Se você se dispuser a calcular tal raiz, passará o restante da sua existência e jamais conseguirá fazê-lo, isto porque tal número possui infinitas casas decimais e diferentemente das dízimas, elas não são periódicas, não podendo ser expressas na forma de uma fração. Esta é uma característica dos números irracionais.

A raiz quadrada dos números naturais é uma ótima fonte de números irracionais, de fato a raiz quadrada de qualquer número natural que não seja um quadrado perfeito é um número irracional. é um número irracional, pois 120 não é um quadrado perfeito, ou seja, não há um número natural que multiplicado por ele mesmo resulte em cento e vinte, já é um número natural, pois .

A letra I ( ) representa o conjunto dos número irracionais.

Utilizando o caractere especial "*", por exemplo, podemos representar o conjunto dos números irracionais desconsiderando-se o zero por .

O conjunto abaixo é um subconjunto do conjunto dos números irracionais:


Diferentemente do que acontece com os números racionais, a realização de qualquer uma das quatro operações aritméticas entre dois números irracionais quaisquer não terá obrigatoriamente como resultado também um número irracional. O resultado poderá tanto pertencer a , quanto pertencer a .

Conjunto dos Números Racionais

0
Esperto por natureza você percebeu que havia mais alguma coisa além disto. No termômetro você viu que entre um número e outro existiam várias marcações. Qual a razão disto?
Foi-lhe explicado então que a temperatura não muda abruptamente de 20° C para 21° C ou de -3° C para -4° C, ao invés disto, neste termômetro as marcações são de décimos em décimos. Para passar de 20° C para 21° C, por exemplo, primeiro a temperatura sobe para 20,1° C, depois para 20,2° C e continua assim passando por 20,9° C e finalmente chegando em 21° C. Estes são números pertencentes ao conjunto dos números racionais.
Números racionais são todos aqueles que podem ser expressos na forma de fração. O numerador e o denominador desta fração devem pertencer ao conjunto dos números inteiros e obviamente o denominador não poderá ser igual a zero, pois não há divisão por zero.
O número 20,1 por exemplo, pode ser expresso como , assim como 0,375 pode ser expresso como e 0,2 por ser representado por .
Note que se dividirmos quatro por nove, iremos obter 0,44444... que é um número com infinitas casas decimais, todas elas iguais a quatro. Trata-se de uma dízima periódica simples que também pode ser representada como , mas que apesar disto também é um número racional, pois pode ser expresso como .
O conjunto dos número racionais é representado pela letra Q ( ).
O conjunto dos números inteiros é um subconjunto do conjunto dos números racionais, temos então que .
Facilmente podemos intuir que representa o conjunto dos números racionais negativos e que representa o conjunto dos números racionais positivos ou nulo.
Abaixo temos um conjunto com quatro elementos que é subconjunto do conjunto dos números racionais:
A realização de qualquer uma das quatro operações aritméticas entre dois números racionais quaisquer terá como resultado também um número racional, obviamente no caso da divisão, o divisor deve ser diferente de zero. Sejam a e b números racionais, temos: